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Abstract.  We address the nature of torque and the Coriolis forces as dynamic properties of the spacetime metric 
and the stress-energy tensor. The inclusion of torque and Coriolis effects in Einstein’s field equations may lead to 
significant advancements in describing novae and supernovae structures, galactic formations, their central super-
massive black holes, polar jets, accretion disks, spiral arms, galactic halo formations and advancements in 
unification theory. We formulate these additional torque and Coriolis forces terms to amend Einstein’s field 
equations and solve for a modified Kerr-Newman metric.  Lorentz invariance conditions are reconciled by utilizing a 
modified metrical space, which is not the usual Minkowski space, but the U4 space. This space is a consequence of 
the Coriolis force acting as a secondary effect generated from the torque terms. The equivalence principle is 
preserved using an unsymmetric affine connection.  Further, the U1 Weyl gauge is associated with the 
electromagnetic field, where the U4 space is four copies of U1. Thus, the form of metric generates the dual torus as 
two copies of U1 x U1, which we demonstrate through the S3 spherical space, is related to the SU2 group and other 
Lie groups.  Hence, the S4 octahedral group and the cubeoctahedron group of the GUT (Grand Unification Theory) 
may be related to our U4 space in which we formulate solutions to Einstein’s field equations with the inclusion of 
torque and Coriolis forces.  
 
1. INTRODUCTION 
 
Current standard theory assumes spin/rotation to be the result of an initial impulse generated in the Big Bang 
conserved over billions of years of evolution in a frictionless environment.  Although this first theoretical 
approximation may have been adequate to bring us to our current advanced theoretical models, the necessity to 
better describe the origin and evolution of spin/rotation, in an environment now observed to have various plasma 
viscosity densities and high field interaction dynamics which is inconsistent with a frictionless ideal environment, 
may be paramount to a complete theoretical model.  We do so by formulating torque and Coriolis forces into 
Einstein’s field equations and developing a modified Kerr-Newman solution where the spacetime torque, Coriolis 
effect and torsion of the manifold becomes the source of spin/rotation. Thus, incorporating torque in Einstein’s 
stress energy term may lead to a more comprehensive description of the dynamic rotational structures of organized 
matter in the universe such as galactic formations, polar jets, accretion disks, spiral arms, and galactic halos without 
the need to resort to dark matter/dark energy constructs.  These additions to Einsteinian spacetime may as well help 
describe atomic and subatomic particle interactions and produce a unification of fundamental forces as preliminarily 
described in section five of this paper.  

   Modification of the field equations with the inclusion of torque requires an unsymmetric affine connection to 
preserve the Principle of Equivalence and inhomogeneous Lorentz invariance, which includes translational 
invariance as well as rotational invariance and, hence, spin. The antisymmetric torsion term in the stress-energy 
tensor accommodates gauge invariance and maintains field transformations. Although the affine connection is not 
always a tensor, its antisymmetric components relate to torsion as a tensor. This is the case because when only the 
unsymmetric part is taken, the affine connections no longer disallows the existence of the tensor terms. We 
demonstrate that such new terms lead to an intrinsic spin density of matter which results from torque and gyroscopic 
effects in spacetime. The conditions on the Riemannian geometry in Einstein’s field equations and solutions are also 
modified for torque and Coriolis forces and spacetime torsion conditions. The torque and torsion terms are coupled 
algebraically to stress-energy tensor.  The effect of the torque term leads to secondary effects of the  Coriolis forces 
that are expressed in the metric.  Torsion is a state of stress set up in a system by twisting from applying torque. 
Hence, torque acts as a force and torsion as a geometric deformation. The gauge conditions for a rotational gauge 

potential, β
ασΓ  are used.  
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The affine connection relates to transformations as translations and rotations in a uniform manner and 

represents the “plasticity” of the metric tensor in general relativity.  Connections can carry straight lines into straight  
lines and not into parallel lines, but they may alter the distance between points and angles between lines. The 

affine connection σ
µνΓ   has 64 components or 43 components of A4. Each index can take on one of four values 

yielding 64 components. The symmetric part of  σ
µνΓ   has 40 independent components and the two symmetric 

indices give ten components with times four for the third index. The torsion tensor µνσΤ   has 24 independent 

components and it is antisymmetric in the first two indices, which gives us six independent components and four 
independent components for the third index (indices run 1 to 4).  These independent components relate to 
dimensions in analogy to the sixteen components of the metric tensor µνg . If this tensor is symmetric then it has ten 

independent components. Note for a trace zero, tr 0 symmetric tensor, we have six independent components. The 
components of a tensor are, hence, related to dimensionality. 

It appears that the only method to formulate the modified Einstein’s equations, to include torque and Coriolis 
terms, is to utilize the U4 spacetime and not the usual four-dimensional Minkowski space, M4. This is the case 
because the vectors of the space in spherical topology have directionality generating a discontinuity or “part in the 
hairs” of a sphere whereas a torus topology can have its vectors curl around its short axis having “no parts in the 
hairs” so that no discontinuity of the vector space exists. Thus all the vectors of the space obey invariance 
conditions. Also, absolute parallelism is maintained.  The U4 space appears to be the only representation in which 
we can express torsion, resulting from torque, in terms of the Christoffel covariant derivative, which is used in place 
of the full affine connections where ρ∇   represents the covariant derivative in U4 spacetime using the full 

unsymmetric connections. Thus we are able to construct a complete, self-consistent theory of gravitation with 
dynamic torque terms and which results in modified curvature conditions from metrical effects from torsion. In the 

vacuum case, we assume  ∫ = 04 xdRδ  where R  is denoted as the scalar curvature density in U4 spacetime. 

 This new approach to the affine connection may allow the preservations of the equivalence principle. The 
usual nonsymmetric stress-energy tensor is combined with its antisymmetric torque tensor.  The U4 is key to the 
structure of matter affected by the structure of spacetime. We present in detail the manner in which the U4 group 
space relates to the unification of the four force fields. The structure of U4 is four copies of U1, the Weyl group, as 

11114 UUUUU ×××=  where U1 x U1 represents the torus.  Hence U4 represents the dual torus structure. In this 
case we believe the U4 spacetime, which allows a domain of action of torque and Coriolis effects, is a model of the 
manner in which dynamical properties of matter-energy arise.  

Further, in section five we show that the 24 elements of the torsion tensor can be related to the 24 element 
octahedral gauge group S4 which are inscribed in S2, and that the 24 element octahedral gauge is related to the cube 
through its being inscribed in S2.  The 24 element group through S2 yields the cubeoctahedral group which we can 
relate to the U4 space; thus, we can demonstrate a direct relationship between GUT theory to Einstein’s field 
equations in which a torque tensor and a Coriolis effect is deve loped and incorporated. 
 
2. ANALYSIS OF TORQUE AND CORIOLIS FORCES 
 
In this section we present some of the fundamental descriptions of the properties of the torque and Coriolis forces. 
We examine the forces, which appear to yield a picture of galactic, nebula, and supernova formation. We apply 
these concepts to Einstein’s field equations and their solutions. The angular momentum is h=L  and prL ×=  

where r  is a radial variable and p  is a linear momentum. The torque 

(1)                                                            Fr
dt
Ld ×==τ                                                            

where F is force and the conservation theorem for the  angular momentum of a particle states that if the total torque 

τ   is zero then 

(2)                                                             0==
dt
Ld

L&                                                                    
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and thus the angular momentum is conserved.  In the case where 0≠τ  then L is not conserved. Torque is a 
twisting or turning action. Whereby 

(3)                                           ( ) pr
dt

pd
rvm

dt
drFr &×=×=×=×=τ                                              

for r  is a constant. The force F is orthogonal toτ , and r is not parallel to F . The centrifugal term is then given as   

(4)                                                               θω cos0
2rc =                                                                 

where ω  is the rotation of a spherical body, such as the earth’s angular velocity or rotation and 0r  its radius and  θ   

is the angle of latitude. The Coriolis term is proportional to v×ω2  and is responsible for the rotation of the plane 
of oscillation of a Foucault pendulum. This is a method whereby the Coriolis force can be detected and measured.  

The key to the gyroscopic effect is that the rate of change in its angular momentum is always equal to the 
applied torque.  The direction of change of a gyroscope, therefore, occurs only when a torque is applied. The torque 

is    (5)                                                            





 −×= γ

π
τ

2
Fr                                                              

due to F  which is perpendicular to r  and L is the vector angular momentum ( )vrmprL ×=×=  where the 

vector r  is taken along the axis of the gyroscope, and γ   is a phase angle in the more general case.  

 A spinning system along an axis r  with an angular momentum L has a torque in equation (1) when the 

force F is directed towards the center of gravity. If the total force, 0=F  then  0=p&  and linear momentum is 

conserved. Angular frequency, ω   

(6)                                                              







= 2

2
2 1

dr
Vd

m
ω                                                            

in the generalized case where  TVE +=  where E is the total energy, V is the potential energy, T is kinetic energy 
and m is the mass of the system.  A revolving of a particle has angular velocity  

(7)                                                              2mr
L

dt
d

==
θ

θ&                                                               

The rate of revolution decreases as r increases.  If  r = constant, then the areas swept out by the radius from the 
origin to the particle when it moves for a small angle  θd , then  

(8)                                                                 θdrdA 2

2
1

=                                                                

then θ&2mrL =    and has an area A.  Then    

(9)                                                     
m
L

dt
d

rr
dt
dA

22
1

2
1 22 ===

θ
θ&                                                   

the radius vector r  moves through  θd  and for a central force, if the motion is periodic, for integration over a 

complete period 0t  of motion, we have the area of the orbit 
m

Lt
A

2
0= .   

For a rigid uniform bar on a frictionless fulcrum, the moment of a force or torque, in the simplest of 
mechanical terms, is the mass times the length of the arm. The product of the force and the perpendicular distance 
from the axis line of the action of the force is called the “force arm” or movement arm. The product of the force and 
its force arm is called the moment of the force or the torqueτ . In more detail, we can describe torque in terms of a 
force couple exerted on the end of a rod for a solid or highly viscous material producing a twist displacement and 
hence shear stress and shear strain 

(10)                                               M
AF

stain
stress

Shear
Shear

==
φ
/
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where F is the force, A is the area, φ  is the angle of distortion and M is the shear modulus.  Torsion is a state of 
stress set up in a system by twisting from an applied torque. Torque creates action or work. The external twisting 
effect is opposed by the shear stresses included in a solid or highly viscous material. That is, torsion is the angular 
strain produced by applying torque, which is a twisting force, to a body or system, which occurs when, for example, 
a rod or wire is fixed at one end (i.e., has an equal and opposite torque exerted on it) and rotated at the other. 
Therefore, torque is a force and torsion is a geometric deformation in the medium given by the torsion β  

(11)                                                            
d

Mr
2

4πβ =                                                                   

where r is the radius and d is the length or distance in flat space. The torque for such a system is defined by 
βτ = Θ  or 

(12)                                                           
d

Mr
2

4Θ= πτ                                                                 

where ?  is in units of dyne-cm, M is the shear modulus and relates to the distortion of the shaft in dyne / cm2 and 
Θ  is the angle in radians through which one end of the shaft is twisted relative to the other. The moment of inertia 

is denoted as I and we substitute 2ω  from equation (6). 

(13)                                          ( ) 2222

2
1

2
1

2
1

ωω ImrmvEk ===                                              

In our case, the term W for a generalized modulus in a medium that relates to the shear tensor of a fluid 
torsion (Ellis, 1971) is utilized.  We employ a torque tensor as the ( ) µντλ =Em,  which is a term in Einstein’s 

stress-energy tensor Tµν  where torque is given as  

(14)                                                       
R

Wr

2

4
µν

µν

π
τ

Θ
=                                                             

where R is the scalar curvature path in U4  space over which torque acts and r is the radius of twist produced by the 
torquing force acting over R. In order to define the scalar sustained for maximum curvature, hence maximum torque 
in spacetime, we express the spatial gradient of R along the vector length ρR  as ρρ RR =∇ .  This is the tensor 

form that can be utilized in Einstein’s field equations. The distance or length is now denoted as R in a generalized 
curved space. We can denote R as µµR . The quantity µνΘ   is a tensor in which rotation is included, and hence 

requires inhomogeneous Lorentz transformations and requires a modification of the topology of space from M4 into 
U4 space, which have intrinsic rotational components. In order to convert from Minkowski space to U4 space we 
must define the relationship of the metric tensor and the coordinates for each space.  We have the usual Minkowski 

metric βα
αβ dxdxgds =2 and the metric of U4 space is given as νµ

µνη dxdxds =2 .  We relate the metrics of 

the M4 space and U4 space as αβν

β

µ

α

µνη g
x
x

x
x

∂
∂

∂
∂

= .  For any tensor vTµ than γ
νµγµ η TT v = (all indices run 1 to 

4).  Then under the gauge transformation for an arbitrary vµλ  as vµµνµν λψψ +→  , we have 

04 =−∫ µν
µν λτη xd  in U4 space in analogy to µνxTdg 4∫ −  in Minkowski space.  

Note that the spin field is the source of torsion and is the key to the manner in which spin exists in particle 
physics and astrophysics. The formulation of torque is not included in Einstein’s field equations in any manner and 
is not incorporated in vv gR µµ , and  vTµ  terms without modifications. Currently it appears that torque and Coriolis 

forces are eliminated by attaching the observer to a rotating reference frame and by assuming an absolute symmetry 
of the stress-energy tensor νµµν TT =  so to make the torque vanish [1].  We believe that inclusion of torque is 
essential to understanding the mechanics of spacetime, which may better explain cosmological structures and 
potentially the origin of rotation. 
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3. THE INCLUSION OF TORQUE AND THE CORIOLIS FORCES TERMS IN EINSTEIN’S FIELD 
EQUATIONS 
 

In order to include torque, we must modify the original form of Einstein’s field equations.  The homogeneous and 
inhomogeneous Lorentz transformations involve linear translations and rotation, and hence angular momentum is 
accommodated.  The time derivative of angular momentum, or torque, is not included in its field equations.  
Researchers have attempted to include torsion by different methods since Elie Cartan’s letter to Einstein in the early 
1930’s [2].  However, we feel that an inclusion of torsion in Einstein’s Field Equations demands a torque term to be 
present in the stress-energy tensor in order to have physical effects. 

Two currently held key issues are addressed in which torque and Coriolis forces are eliminated.  First, in 
reference [1] the complications of fractional differences are avoided by formulating them in terms of the size of 
spatial lower limit Planck length dimension, l  and the earth’s gravitational acceleration g ~ 103 cm/sec2.  The 
choice of 1g <<l  is made so that the accelerated frames undergo small accelerations which yields an 

approximately inertial frame.  Black hole dynamical processes requires a relaxation 1g <<l .  If one considers a 
vacuum structure having a lattice form, then the conditions to include torque and Coriolis forces require a relaxation 
of the 1g <<l  condition to be consistent with black hole physics and torque terms in relativity, then 1≤lg  

or ~ 1gl .  Second, the torque and Coriolis forces are eliminated in a nonrelativistic manner by carefully choosing 
the observer’s state of coordinates by preventing the latticework from rotating, i.e. by tying the frame of reference to 
a gyroscope that accelerates in such a manner that its centers of mass are chosen to eliminate these forces [1].  
Hence, we have a major clue for including torque so as to fix our frame of reference to the fundamental lattice states, 
which includes rotation terms, and does not eliminate them.  Then, for   

(15)                                                       ( ) ( )euaam
dt
ed

⋅−⋅= θ                                                     

so that ( )eua ⋅  is eliminated, noting that u  is the four vector velocity and e is a basis vector in analogy to x, y, z. 
The incorrect transport equation is the Fermi-Walker transport equation because it is formulated in a rotating frame 
that eliminates torque.  This equation acts at the center of mass so that I, the moment of inertia, is zero; hence this 
cannot be our reference frame.   

It appears that we must utilize a different kind of rotational frame of reference. We have utilized this frame 
using the Kerr-Newman or Reissman-Nordstrom solutions with spin, as well as atomic spin and the spin of the 
whole universe as in our scaling law [3-8].  We thus generate a torus from our new basis vector set e [9]. 
 Given these two conditions, we proceed to account for a torque term in Einstein’s Field Equations.  The 
angular momentum vector L for a system must change in order to have torque.  Hence L is not orthogonal to u, the 
four velocity; thus, a torque can be utilized in Einstein’s field equations.  Then  

(16)                                                          Lau
dt
Ld

•×≠ )(                                                            

whereas in the Fermi-Walker transport case  

(17)                                                          Lau
dt
Ld

•×= )(                                                             

where a  is the four acceleration. The fact that a non-zero solution exists allows us to choose frames of reference 
that do not move with the system and include torque, which requires a variable acceleration.  No longer is 

(18)                                                              
4

3 2
2 h=L                                                                   

constant because torque,  

(19)                                                          0≠==
dt
Ld

L&τ                                                             

where L is the angular momentum.  
 Key to the inclusion of torque terms and its torsion effects is the modification of Einstein’s field equations 
formulated in the generalized U4 spacetime. This approach can be reconciled with conditions for affine connections 
and extended Lorentz invariance. Torsion resulting from torque is introduced as the antisymmetric part of the affine 
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connection.  The U4 space appears to be the only spacetime metric that yields an unsymmetric affine connection and 
an antisymmetric torsion tensor term that preserves Lorentz Invariance [10]-[11].  We believe the U4 spacetime 
allows a domain of action of torque and gives us a model of the manner in which dynamical properties of matter-
energy arise out of the vacuum structure [12].  

The vectors of the space in spherical topology have directionality (having a part in its hairs on a sphere) 
whereas a torus topology can have its vectors curl around its short axis (i.e., having no parts on the hairs of a torus) 
so that no discontinuity of the vector space exists. Thus all the vectors of the space obey invariance conditions. Also, 
absolute parallelism is maintained.  Topologically, a torus is a surface of revolution generated by rotating a circle 
about a non-intersecting coplanar line as its axis. 
 For the vacuum gravitational field equations we introduce the antisymmetric torque term where  

0,
; =σµν
στ    which gives us the antisymmetric derivative of a second-rank potential field σµνψ ,  .  Torsion appears 

to be the property of the geometry of spacetime, not the stress-energy tensor term; whereas torque is an inherent 
property of the stress-energy term.  Thus torque and torsional effects on curvature can be expressed as tensor terms. 
We utilize the variational principle   

(20)                                                    ∫ =+− 0)( 4xdLRηδ                                                    

where  R  is subtended curvature density and L is the Lagrangian.  We define µνη  as   µνg  expressed in U4 space. 

Then we can write the field equations 
(21)                                              02 =+∇+− µσβµ

σβ
µνσ

σ
µν τττη                                                

which are the gravitation and µνη  is the Einsteinian tensor of U4 space time. In vacuum  0;; =µνσ
νσσ  implies the 

existence of a conserved current, giving us a more generalized form of the variational principle or  

(22)                                                  ∫ =++ 0)( 4 xdKLLR αρρ κδ                                                

for the source tensors  

(23a)                                                            µν
µν

ρρ δδ gTL =                                                        

and   
(23b)                                                           µν

µν
αα δψδ jL =                                                       

where µν
ρΤ  is the density stress-energy tensor and ρL  is the Lagrangian density. The constant ?  is the coupling 

constant πκ 8= and K is the coupling constant for torque term. We define 

(24)                                                     2/µνµνµν κ KjJ −Τ=                                                   
which the field equation  
(25)                                                       µνναβµ

αβ
µν ττη J=− 2                                                      

which is given as the right side of the above equation (24) and µντ  is the antisymmetric source term which arises 

from intrinsic spins where µνσµν
σ J

K
T

2
,

; −= .  Then gauge invariance implies 04 =−∫ µν
µν λτη xd for an 

arbitrary gauge transformation µνλ . 

 
 The stress-energy tensor can then be related to the stress tensor and the torque tensor as  
(26)                                                   αβ

αβ
µνσµν

σ τκτ jsK )/3(,
; =                                                      

 In vacuum the static solution yields the line element 

(27)                                               22222 dredrdteds v λ+Ω−=                                                    
where ?  and ν  are functions of r only as ? (r) and )(rν .  The Ω  term is an anharmonic object which preserves 
absolute parallelism.    We can write a more generalized stress energy term as 

(28)                                                     T µν  µνµν κτ+Τ= K                                                          
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where the first term µνΤ  is the usual stress energy term where 0=∂ ν
µν T  and the second term µντ  is the torque 

term and T µν  becomes the total stress energy term including torque. Note that both covariant and contravariant 
tensors notation are utilized. The most general form of Eins tein’s field equations with torque and the cosmological 
term, 0≠Λ  in U4 spacetime is  

(29)                                        µνµνµνµνµµµν κτηη +=Λ−− KTRR
2
1

                                        

Where we have the usual gravitation source terms µνΤ   and non gravitational source terms µντ  withΛ  as the 

cosmological constant in U4 space. Note that units of 1== Gc  are used in this section and that the cosmological 
constant in a torque field may yield correct approximations for the universal cosmological acceleration of distant 
objects.  

A conceptual picture of the interpretation of Einstein’s field equations is that the presence of matter-energy 
curves space and time. Torque is considered as a property of the stress-energy term, and the Coriolis forces are 
derived as secondary properties resulting from the torquing of matter-energy in spacetime. Hence, resulting Coriolis 
effects are driven by torquing on spacetime and therefore spacetime geometry is modified.   

 
The Coriolis and centrifugal terms enter when we define a new frame of reference.  We start from the 

Lorentz coordinates which holds everywhere  

(30)                                                           µννµ η=






∂
∂








∂
∂

xx
                                                       

We define j
j

,00 φ=Γ for a given scalar potential field, φ  for a Galilean rather than Lorentz coordinates.  Then 

(31)                                                           jkkj xx
δ=








∂
∂









∂
∂

                                                     

and tx =0 . The potential φ  satisfies the Laplace-Poisson equation. 

For rotation and translation, we have jk
jk

j axAx +=  where the rotation matrix is jkkj AA δ=ll  and the 

translation part is given as ja .  Then kj
jk

k axAx −=  for k j
jka A a≡                                                                

which defines a new coordinate system.  The   

(32)                                                         lll '0 kjk
j
k ΑΑ=Γ=Γ                                                        

produces the Coriolis forces from these transformations.  From 

(33)                                                  )(00
k

kjkj
j axAA

x
&&&& l

l −+
∂
∂

=Γ
φ

                                              

gives us the centrifugal force, kjk AA l
&&  and the inertial forces ka&&  which are separated.  Thus we have tensor 

notation which allows us to relate these terms to the stress-energy tensor of Einstein’s field equations.  The inertial 

forces ka&& is the second derivative with respect to time and l
&

'kA  is the first time derivative. 

 The scalar potentials transform as +−= kk xa&&φφ  additional higher order terms such as  ( )kk xaa &&  for 

Coriolis, j kA Al l
&  and centrifugal forces, l

l
&& xAA kjk . If the additional higher order terms are zero, then no Coriolis 

and centrifugal terms are included.  One can measure the quantity  

00
j

jx
φ∂

= Γ
∂

 but only in a finite range.  We can express these terms in terms of the metric theory of gravity as 

(34)                                          







∂
∂

−
∂

∂
+

∂
∂

=Γ β
µν

ν
βµ

µ
βναβα

µν x
g

x
g

x
g

g
2
1

                                        

 For  
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(35)                                                       0)(0 →⋅∇−=Γ αβαβ edt                                                       

then the gradients 0dtβ∇ =  for all β  and 0dtµ∇ =  for all velocity vectors ν=kx&  and spatial vectors, x  

acting on arbitrary basis set, je  or  0=⋅ kj ee .  This is clearly not the case for centrifugal, torque and Coriolis 

terms.  The gradient of proper universal time is not conveniently constant (as it is in the above case) when additional 
terms are included, hence we will need to redefine the geometric version of space and time by use of our vacuum 
equations, which we demonstrate in this section and in section 4 and relates to the U4 metric.   Hence, the key may 

be in relating the Gaussian curvature through a radius 2

1
a =

a
 to the cubeoctahedron and dual torus  

form (see Fig. 1).   

Even for an accelerated observer for a particle velocity j

j

e
dx
dx

v 0≡   then we have the inertial acceleration   

(36)                                             ( )vvaae
dx

xd
j

j

•+×−−= 2202

2

νω                                           

where tx =0  is the fourth component of space, which is time, and 2ω ν×  is the Coriolis term and ( )νν•a2  is 

the relativistic correction to an inertial frame.  The signature we use is ),,,( +++− .  The expression in terms of the 

potential energy is 
2

2
2

1
( )
d

m dr
φ

ω = where ω  is the angular velocity.  This latter term requiring modification in 

order to include torque is  

(37)                                                             L
dt
Ld &==τ                                                                     

where Fr ×=τ , see equations (1),(2),(3). 
Torque also has intrinsic properties of the spacetime manifold. One can relate the torsional effect as a 

geometrical affect on spacetime curvature topology in analogy to Riemannian geometry. Using the torque term from 
equation (14) which is in units of dyne-cm we return to our generalized stress-energy tensor 

(38)                                               T µν  µνµν τ
π

+Τ
π

= l4

4 88
c

G
G
c

                                               

where T µν is the total stress-energy tensor including its torque term. The quantity in the usual stress energy and the 
new torque term includes the fundamental force [8] 

(39)                                                                G
cF

4
=                                                                    

in units of dynes. The units of the left side of the field equations is in the units cm2, or length squared. The quantity 
l  is in cm and 

(40)                                                              
2/1

3 





=

c
Gh

l                                                             

which is the Planck length and can be written as  

(41)                                                              
2/1







=

F
ch

l                                                             

for the fundamental force in equation (39) .  Now we can write the torque term as  

(42)                                             
( ) µνµν τ

π
τ

π
2/3
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Now we can write the total stress energy term as  



The Origin Of Spin 

 

161

(43)                       T µν ( ) ( )
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+Τ=+Τ= µνµνµνµν τπτ

π
π 2/5

2/1

2/3

2/1

8
8

8
F
c

F
F
c

F
hh

                       

From equation (29) and (38) we can write our generalized field equations with the inclusion of torque as, 

(44)                               µνµνµνµνµµµν τππηη l4

4 88
2
1

c
G

G
cRR +Τ=Λ−−                                     

where µνη represents the metric of tensor for the U4 topological space.  This topology is unique for the inclusion of 

the torque term in the stress-energy tensor in equation (44).  Coriolis forces result from rotational effects of torque in 
this topology and also may yield a non-zero cosmological term, Λ .  See the next section. 

 
4. EXTENDED KERR-NEWMAN SOLUTION TO EINSTEIN’S FIELD EQUATIONS WITH THE 
INCLUSION OF TORQUE 
 
We have developed a new solution to Einstein’s field equations in the previous section which contains a torque term. 
This requires unsymmetric affine connections in the metrical space. To introduce torque into the Einstein-Maxwell 
equation, in order to unify gravity and electromagnetism, we must introduce an antisymmetric part into vFµ divided 

by the number of permutation related to the degrees of freedom. We can then represent the simplest covariant 
second rank tensor potential to represent torsion, which we term  σµνψ , . The electromagnetic field vector is 

constructed from the vector fields as vvF µµ φ2= where vµφ  is the potentials.  We define the torsion term in terms of 

generalized potentials as   σµσµ ψτ ,, vv = . Gauge invariance is then expressed as vvv µµµ λψψ +→  where vµλ  is 

any vector field. Thus one expects that the second rank current density is conserved [13]-[14]. 
 We proceed from the solutions to Einstein’s field equations including the torque term conditions and 
determine that these conditions require the inclusion of the cosmological constant 0≠Λ  and the modified stress-
energy tensor. The Schwarzschild spacetime geometry for the Schwarzschild black hole gravitational field for a 
spherical coordinate line element, is given by 

 (45)                            )sin(
)/21(

)
2

1( 2222
2

22 φθθ ddr
rM

dr
dt

r
M

ds ++
−

+−−=                         

We consider the metric parameter, Φ  for a non-zero cosmological constant of the form  )/21(
2
1

rMn −−=Λ l  

. The normalization scale )/21(
2
1

rMn −=Φ l for a frame of reference external to the black hole. We can also 

write this form of the cosmological constant as   

(46)                                                   2/1]/21[
1

rM
e

−
=Λ                                                        

 or 

(47)                                                      ]/21[2 rMe −=Λ−                                                           

at the Schwarzschild radius sr  , for a variable radius M(r). A slice through the equatorial of a spherical system and 
also between a dual torus is given as  

(48)                                             φdrdr
rrm

ds 222

]/)(21[
1

+
−

=                                              

which comprises an apparent flat space where Mrm =)( . We can then write   

(49)                                                  2222/2 φdrdreds += Λ                                                        
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for a non-zero cosmological constant,Λ . For  2c
M

rs ∝ , which is the Schwarzschild singularity. The global 

structure of the Schwarzschild geometry represents a method of embedding Feynman diagrams. The coordinate 
system that provides maximum insight into the Schwarzschild geometry is known generally as the Kruskal-
Szekerers coordinate systems [15]-[16].  
 Charge and spin are relevant; for example, consider the Kerr-Newman or Reissner-Nordstrom 
generalization of the Schwarzschild geometry. For gravitational and electromagnetic fields, we solve the coupled 
Einstein-Maxwell field equations to include the constraints of M, mass, q, charge, and s , spin. The Kerr-Newman 
metric is written in the form 

(50)      222
2

222
2

2
22

2
2 ])[(

sin
]sin[ θρ

ρ
φ

ρ
θ

φθ
ρ

ddradtdardadtds +
∆

+−++−
∆

−=         

We define the quantities in terms of charge, q, and the quantity a  is defined as Msa /≡ , the angular momentum, 
which we usually defined as L. This gives us a method to bring torque into our model since τ  is defined as 

L
dt
Ld &==τ . Also torque is dependent on angular velocityΘ& which is expressed in terms of torque as 

R
Wr
2

4Θ
=

π
τ  where the angular velocity acceleration is 2mr

L
dt
d

=
Θ

=Θ& . Hence it appears we can expand the 

Kerr-Newman solution to accommodate torque.  For the present the units of 1== Gc  are used.  We can convert 

the units of torque into units of cm2. The units of torque are dyne-cm or ergs
cm

gm =2

2

sec
. 

 Before proceeding further, we need to define two other quantities   

(51)                                                    θρ 2222 cosar +≡                                                        
and 

(52)                                                  222 2 qamrr ++−≡∆                                                      

Note we use the action integral ∫ + xdFR g
4)( ε  so that we can convert mass in gm or density in gm/cm3 into mass 

in cm or density in cm-2 by multiplying by 0.742 x 10–28 cm/gm and lengths in units 2/1
0 )8/3( Pπ   and pressure in 

units 0ρ , mass in units 2/1
0 )32/3( πρ . 

 Constraints on the Kerr-Newman geometric solution to Einstein’s field equations give black hole topology 

for the condition 222 aqM +≥ .  Recall that the quantity, a  contains spin and mass, in the condition where for 

M such that  222 ~ aqM + . It is possible that, under imminent collapse, near  sr  centrifugal forces and / or 
electrostatic and plasma electromagnetic repulsion will be delayed or halt and collapse and become balanced [17]. 
 In the case of the Reissner-Nordstrom geometry which contains electromagnetic fields, for  0≠q  but  

0=s spin is zero.  The Kerr geometry is valid for an uncharged system or q = 0 and a Schwarzschild geometry for 

0== sq .  The case we consider that is relevant to including torque is the case for 222 )/( MsqM +=    for 

the Kerr-Newman geometry for a black hole rotation in the θ  direction and spin along the z  axis. Also, angular 
momentum will occur along the z  axis only. For black holes q<<M (utilizing 1== cG  units), the repulsive 
electrostatic force on protons of mass mp is similar to the gravitational pull by a factor of  

(53)                                        2010~~
ρρ m

e
Mm

eq
force
force

nalgravitatio
ticelectrosta

=                                      

where M is the mass of the black holes. 
 We do not need to convert rectilinear coordinates x, y, z to the spherical coordinates θ,r , and φ . The θ  

coordinates moves or rotates in the x-y plane and φ  moves in the zr  plane where r is a radius vector from the 
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origin of the x, y, z system. The spherical coordinate θ   can go from  πθ 20 ≤≤   and  πφ ≤≤0   and    

0≥r .  Then θφ cossinrx =  and θφ sinsinry =   and φcosrz = .  Also  2222 zyxr ++=   and  

x
y

=θ   relating the variables x, y, z, and r and θ  utilizing the Kerr-Newman extended solutions including torque 

in units of  1=== Gc h  gives u 
(54)                  
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here the latter term is the torque term 
mR
Wr

R
Wr

E 22
)(

4242 Θ
=

Θ
=

ll ππ
τ  with precession defined as θcos  and l , 

E and m are in Planck units. Note that spin and torque are related. The Coriolis forces act as higher order terms 
which are smaller than the other terms but are still significant [17].   

In this section we have shown that we can modify Einstein’s field equations and the Kerr-Newman solution 
in order to accommodate torque and the Coriolis forces, which we term the Haramein-Rauscher solution. Since 
Einstein’s field equations obey the Laplace-Poisson condition, the torquing of spacetime may be the result of the 
vacuum gradient density in the presence of matter-energy.  Modification of the field equations makes it possible to 
include the torque terms and hence generate more realistic solutions. These solutions more comprehensively 
describe the dynamical rotational structures of galaxies, novae, supernovae, and other astrophysical structures which 
in this case are driven by a spacetime torque. Hence, with the inclusion of torque and Coriolis effects in Einstein’s 
field equations, the spacetime manifold correlates well with the observable mechanisms of black holes, galactic 
topology, supernova formation, stellar plasma dynamics and planetary science such as ring formation and the 
Coriolis structure of atmospheric dynamics. This may lead to a model where the driving torque and the dynamical 
Coriolis forces of the spacetime manifold topology are responsible for the observed early formation of mature spiral 
galaxies [18].  Further, our model is consistent with galactic structures, the super-massive black hole at their centers, 
as well as polar jets, accretion disks, spiral arms and galactic halo formations.  
 
5. THE GROUP THEORETICAL APPROACH TO A UNIFIED MODEL OF GRAVITATION 
INCLUDING TORQUE AND THE GUT THEORY 
 
A test particle falling in a gravitational field accelerates relative to the observer’s frame as 

(55)                                                    vae
dx

xd j
j

×−−= ω2ˆˆ
2

0

2

                                                    

where  0x   is the temporal component of  X ( )tzyx ,,,=  or tx =0  for 0=j  and in general j  runs 0 to 3.  The 

inertial acceleration of the observer’s four space acceleration is a . For the spatial vectors of the observer,  jê  are 

rotating with angular velocity, ω .  In flat space this is the geodesic trajectory only if an additional rotational frame 

of reference  ( )νν⋅+ a2  [1]. This is not our case when we include the Coriolis effects. 

 We term 0e  the points along the observer’s path as its time direction 
τd

dx
ue 0

0 ==  where τ  is now 

defined as the proper time and the spatial components jê  are the basis vectors. For tetrad orthogonality we have 

ijji ee δ=⋅ ˆˆ , for Euclidian absolute parallelism or for the generators of Lorentz transformation, then the transport 

laws of a test particle space in curved spacetime appear as moving in a flat space. However, this is only a very 
limited approximation, as spacetime is curved and Riemannian in global space.  The equivalence principle or the 
time rate of change of a vector occurs over finite distances, not just infinitesimal distances. 
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Figure 1(a) is a topological representation of the Haramein-Rauscher solution as a result of the addition of torque 
and Coriolis force terms as an amendment to Einstein’s field equations, which modifies the Kerr-Newman solution.  
The Lorentz invariance conditions are reconciled by utilizing a modified metrical space, which is not the usual 
Minkowski space, but the U4 space.  This space is a consequence of the Coriolis force acting as a secondary effect, 
which is generated from the torque term in the stress-energy tensor.  In figure 1(b). Coriolis type dynamics of the 
dual U1 x U1 spacetime manifold are illustrated.  The form of metric produces the dual torus as two copies of    U1 x 
U1, which we demonstrate through the S3 spherical space, is related to the SU2 group and other Lie groups. In figure 
1(c). the 24 element group through S2 yields the cubeoctahedral group which we can relate to the U4 space (next 
section). Thus the S4 octahedral group is related to the U4 topology and we demonstrate that the cubeoctahedral 
group relates to the GUT (Grand Unification Theory).  

 
 We define a  the four acceleration  ua µ∇=  and the angular velocity of rotation, of the spatial basis 

vectors, je  in the Fermi-Walker transport theory, is ω . The Fermi-transport vectors are expressed relative to the 

inertial guidance gyroscope, 0=⋅=⋅ ωuau .  If u  and ω  are zero then the parallel to the observer 

is 0ˆ =∇ ju e . The proper time gives us the starting point of the geodesic with an affine parameter equal to the 

proper length. Hence, we see that the role of the Coriolis force, as well as including the torque term in Einstein’s 
field equations, is again going to lead us to a U4 space rather than an M4 space, in which we utilize the 
inhomogeneous Lorentz transformation.  
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Further, we must consider a geometric picture in terms of finite group theory with finite generators and its 
relationship to the Lie group theory and their algebras having infinitesimal generators. These finite groups are the Cn 

groups. These groups can be related to the 24 element octahedral group, the [ ]ΟC  and [ ]ΟC  groups. There is no 
real independent observer as the observer moves within the system since, in fact, under no circumstances could any 
observer be completely disconnected from the observed, since observation would then be impossible.  
 The affine connections that are utilized in general relativity also apply in crystallography. Under affine 
connections, transformations are linear and rotational in a uniform manner. Straight lines are carried in to straight 
lines and parallel lines, but distances between points and angles, lines can be altered.  All representations of a 
compact group are discrete. Unitarity relates to the conservation of such quantities as energy, momentum, particle 
number, and other variables. The crystallographic lattice groups are finite groups: Cn and Kn specify the translations 
and rotations in a finite dimensional space. (Note in crystallography, the finite dimensional space involves arrays 
specifying elements of the groups in a spatial lattice.) This lattice structure appears to reflect the actual geometric 
structure of space and time [19].  The two torus satisfies conditions of a Lie group which can have an underlying 
manifold as a Lie algebra. This is necessary for the concept of invariance to exist. The McKay groups are a finite 
subgroup of the special unitary Lie groups such as SU2, which is the set of unit determinants 2 x 2 complex matrices 
acting on C2, the complex space. The SU2 group is geometrically the 3 sphere, S3 acting on C2. Thus, we can relate 
its torus geometry to the Lie groups of the GUT scheme. 

For the infinitesimal generators of the Lorentz group, we have an associated Lie algebra. However, if we 
have finite generators, we have a Cn group space. We might then say that M4 space has a Lie algebra associated with 
it, whereas U4 space has a finite Cn algebra associated with it. We might well expect this because of the group 
theoretical association of the double torus and the cubeoctahedron, which is described by a crystallographic Cn 
group theory.   

The Coriolis force comes from out of the metric; that is the spatial part or the left side of the field equations 
utilizing the double octahedral group or cube octahedral geometry. For the U4 metric we see that the [ ]ΟC  group 
naturally leads to the GUT scheme. Hence, the unification picture results directly from the geometry of spacetime 
with the consideration of finite group theory. The U4 space directly relates the new Haramein-Rauscher equations of 
gravity, matter-energy, and torque with the GUT theories. Thus, we can construct a fundamental relation of 
cosmology and quantum particle physics by relating Lie groups and their infinitesimal generators of the Lie algebra, 
and groups having finite generators for finite groups. 

The special unitary Lie groups, which are topological groups having infinitesimal elements of the Lie 
algebras, are utilized to represent the symmetry operations in particle physics and in infinitesimal Lorentz 
transformations. For example, the generators of the special unitary, SU2 group is composed of the three isospin 
operators, I as −+ II ,  and zI having communication relations [ ] ziIII =−+ , . The generators of SU3 are the three 
components of I spin and hypercharge, Y and for other quantities which involve Y and electric charge Q. Thus, there 

are eight independent generators for the traceless 3 x 3 matrices of SU3. The +Ο3  group of rotations is homomorphic 
to the SU3 group. 
 The regular polyhedral groups, including the cube and the octahedron, form a complete set of finite 
subgroup of SO3 the special orthogonal-3 group. The continuous Lie groups SU2 acts on a two dimensional real 
space in analogy to SO3 acting on a three dimensional real space. Significantly, the S3 group, also called the SU2 
group acts as a space which is the double cover of SO3.   That is SU2 acts as a space that is a sphere, S3, and SO3 
which is S3 / {+1} so that SO3 can be derived from its subgroup SU2 by the plus and minus elements of SU2 in order 
to form SO3 [20]-[21]-[22]. The set of all rotations of a sphere is a useful example of a Lie group. They are a 
continuous infinity of rotations of an ordinary sphere or 2-sphere, S2, which is embedded in SO3. The rotations of S2 
form a 3-sphere modular plus or minus 1, called S3 / {+1} which is embedded in SO3. This group is the set of all 
special orthogonal 3x3 matrices. The finites subgroups of SO3 are the symmetry groups of the various polyhedra 
which are inscribed on the sphere S2 upon which SO3 acts. These regular polyhedral groups are the symmetry groups 
for the five Platonic solids. The octahedron and icosahedron are inscribed in S2, the symmetry group of 24 elements 
for the octahedral group O and the 60 element icosahedral group I. The polyhedral groups T, O, and I describe the 
symmetries of the five Platonic solids [23]. 
 The octahedron and the cube have the same symmetry group and are dual to each other under the S4 group. 
The icosahedron and the dodecahedron are dual to each other under the A5 group and the 12-element group T is the 
tetrahedral group of which the symmetries are inscribed in S2 and is the A4 group. The 24 element octahedral group 
is denoted as O and is the set of all symmetries inscribed in S2, which is also the symmetry group of the cube since 
the eight faces of the octahedron correspond to the eight vertices of the cube. The relationship of the finite and 
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infinitesimal groups is key to understanding the symmetry relation of particles, matter, force fields or gauge fields 
and the structural topology of space, i.e., real, complex, and abstract spaces. We now relate the toroidal topology and 
the cubeoctahedron geometry to current particle physics. 

The 24 element octahedral group is given as 

(56a)                                                    422

~
][ UUUOC ××=                                                         

which is mapable to the conformal supergravity group SU(2,2/1).  We can write this as 
(56b)                                         33211][ SUSUSUUUOC ××××=                                            
The U1 can act as the photon (electromagnetic) gauge invariance group and relates to the rotation group SO3.  The 
other U1 scalar is the base for space and time as the compact gauge group of the spin two gravitron.  The SU2 group 
can be associated with weak interactions and  21 SUU ×  is the group representation of the electroweak force.  The 
SU3 groups represent the strong color quark – gluon force or gauge field. [20] 

Thus we have a topological picture that relates to the unification of the four force fields in the GUT and 
supersymmetry models.  More exactly, the maximal compact space is embedded in C[OS4] or SU(2, 2/1) yields the 
24 element conformal supergravity group.  The icosahedron or Klein group yields the set of permutations for S4 
permutation group associated with C[O].  Also in the Georgi and Glashow scheme [24], we can generate SU5 as a 24 
element group related to S4 embedded in SU5=SU2×SU3.  The key to this approach is the relationship of the finite 
groups C[O] and the Lie group such as the SUn groups.  This picture is put forward in detail by Sirag in his 
significant advancement of fundamental particle physics [20]-[21]. 

The eight (8) fundamental spinor states can be expressed in terms of the Riemann sphere S2 which defines the 
relationship of spinors to spacetime.  The 8 spinor states correspond to the 8 vertices of a cube.  For 8 antistates, 
Sirag can generate all 16 states of the fermions family for a cube and its mirror image cube.  In his work, Sirag 
utilizes the symmetric four group S4 which is isomorphic to O, the octahedral group. 

As before stated, the cube and octahedron are dual to each other under the symmetry operations of the S4 group.  
Also, the tetrahedron is dual to the cube under the A4 group, and the icosahedron and dodecahedron are dual under 

the A5 groups.  The cover group ][OC ′  , which is the DS4 group, is the cover group of C[O] and ][OC .  The C[O] 

group is also denoted SU(2, 2/1) and is the compact representation of the Yang-Mills bosons and ][OC  represents 
the matter fields of the Fermions.  The Weyl group is SU(2,2) which is related to SU(2, 2/1), the Penrose twistor 
[25]-[26], which represents a vortical rotational complex dimensional space, mapable to the Kaluza-Klein model, 
which relates the electromagnetic metric to the gravitational metric as a five dimensional space [27]-[28].  The 
Penrose twistor is a spin space and is like a double torus without a “waste.”  The U2 group represents the four real 

spacetime dimensions and 2U%  the four imaginary spacetime components forming a complex eight space [29]-[30]-
[31].  The twistor algebra of this complex eight space is mapable 1 to 1 with the spinor calculus of the Kaluza-Klein 

geometry, thus electromagnetism is related to the gravitational spacetime metric [29].  The S4 and 4S  groups are 24 

element groups, as S4 can be associated with C[O] and 4S  with ][OC .  The S4 group is associated with the 24 

dimensions of the Grand Unification Theory, or GUT theory.  The conjugate group of 4S  is associated with 

2 2 4U U U× ×%   or for U4, which is four copies of U1. That can be written as 1 1 1 1U U U U× × ×  where 1 1U U×  

represents a torus, hence U4 represents a double or dual torus. Both C[O]  and ][OC  relate to the T4 group, where 
Tn is the direct product of n copies of U1, called an n torus, which is always an Abelian group. The T in this context 
refers to the structure of space and time.  

We have demonstrated that the cover group of the cubeoctahedron generates the dual of the torus 1 1U U×  ,  

and hence we demonstrate that this cover group generates the dual torus, which is 1 1U U×  cross 1 1U U×  in the 
Harameinian topology (see Fig. 1), which is defined as the dual torus space.  The hourglass topology is directly 
formed from the topology of the dual sphere. The relationship of the cubeoctahedral groups and the dual torus is a 
fundamental tenant of the Haramein geometric topology and, as seen here, seems to be fundamental for unification 
[31]. 

The key is that the infinitesimal Lorentz transformation is related to the concept of the infinitesimal 
generators of the Lie algebras. We are dealing with both infinitesimal and finite element systems when we consider 
torque and Coriolis terms in Einstein’s field equations. The Lie groups are, of course, the basis of the GUT 
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unification scheme. The relationship between the torus space U4 and the subset of the [ ]ΟC  and [ ]ΟC  spaces is 
the cubeoctahedron. The inclusion of torque and Coriolis terms in Einstein’s field equations, forming a modification 
of the field equations, yields a group theoretical basis in the U4 metrical space that forms a possible unification of the 
gravitational force with its strong, weak, and electromagnetic (electro-weak) forces in a unified theory. 

 
CONCLUSION 
 
We have developed an extended form of Einstein’s field equations in which we include torque and Coriolis forces, 
and hence torsion effects. New solutions are found to the extended field equations, which generates a modification 
of the Kerr-Newman solution we term the Haramein-Rauscher solution. We establish a reference frame in the 
description of the rotating metric that accommodates the complexities of gyroscopic dynamics – torque and Coriolis 
forces. This approach may allow us to define the origin of spin in terms of the new torque term in the field equations 
and better describe the formation and structure of galaxies, supernovas, and other astrophysical systems, their 
plasma dynamics and electromagnetic field.  We formulate a relationship between gravitational forces with torsional 
effects and the Grand Unification Theory (GUT). This unification is formulated in terms of the metric of the new 
form of Einstein’s field equations which is a U4 space and the group theoretical basis of the GUT picture. Hence, 
gravitational forces with spin-like terms may be related to the strong and electroweak forces, comprising a new 
unification of the four forces. 
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