THE ORIGIN OF SPIN: CONSIDERATION OF TORQUE AND CORIOLISFORCES
IN EINSTEIN'SFIELD EQUATIONS AND GRAND UNIFICATION THEORY

N. Haramein* and E.A. Rauscher”
" The Resonance Project Foundation, haramein@theresonanceproject.org
" Tecnic Research Laboratory, 3500 S. Tomahawk Rd, Bldg. 188, Apache Junction, AZ 85219

Abstract. We address the nature of torque and the Coriolis forces as dynamic properties of the spacetime metric
and the stress-energy tensor. The inclusion of torque and Coriolis effects in Einstein’s field equations may lead to
significant advancements in describing novae and supernovae structures, galactic formations, their central super-
massive black holes, polar jets, accretion disks, spira arms, galactic halo formations and advancements in
unificaion theory. We formulate these additional torque and Coriolis forces terms to amend Einstein’'s field
equations and solve for amodified Kerr-Newman metric. Lorentz invariance conditions are reconciled by utilizing a
modified metrical space, which is not the usual Minkowski space, but the U, space. This space is a conseguence of
the Coriolis force acting as a secondary effect generated from the torque terms. The equivaence principle is
preserved using an unsymmetric affine connection.  Further, the U; Weyl gauge is associated with the
electromagnetic field, where the U, space is four copies of U;. Thus, the form of metric generates the dua torus as
two copies of U; x U;, which we demonstrate through the S° spherical space, is related to the SU, group and other
Lie groups. Hence, the S' octahedral group and the cubeoctahedron group of the GUT (Grand Unification Theory)
may be related to our U, space in which we formulate solutions to Einstein’s field equations with the inclusion of
torque and Coriolisforces.

1. INTRODUCTION

Current standard theory assumes spin/rotation to be the result of an initial impulse generated in the Big Bang
conserved over hillions of years of evolution in a frictionless environment. Although this first theoreticd
approximation may have been adequate to bring us to our current advanced theoretica models, the necessity to
better describe the origin and evolution of spin/rotation, in an environment now observed to have various plasma
viscosity densities and high field interaction dynamics which is inconsistent with a frictionless ideal environment,
may be paramount to a complete theoretical model. We do so by formulating torque and Coriolis forces into
Einstein’s field equations and developing a modified Kerr-Newman solution where the spacetime torque, Coriolis
effect and torsion of the manifold becomes the source of spin/rotation. Thus, incorporating torque in Einstein's
stress energy term may lead to a more comprehensive description of the dynamic rotational structures of organized
matter in the universe such as gaactic formations, polar jets, accretion disks, spira arms, and galactic hal os without
the need to resort to dark matter/dark energy constructs. These additions to Einsteinian spacetime may as well help
describe atomic and subatomic particle interactions and produce a unification of fundamental forces as preliminarily
described in section five of this paper.

Modification of the field equations with the inclusion of torque requires an unsymmetric affi ne connection to
preserve the Principle of Equivalence and inhomogeneous Lorentz invariance, which includes trandational
invariance as well as rotationa invariance and, hence, spin. The antisymmetric torsion term in the stress-energy
tensor accommodates gauge invariance and maintains field transformations. Although the affine connection is not
always a tensor, its antisymmetric components relate to torsion as a tensor. This is the case because when only the
unsymmetric part is taken, the affine connections no longer disallows the existence of the tensor terms. We
demonstrate that such new termslead to an intrinsic spin density of matter which results from torque and gyroscopic
effects in spacetime. The conditions on the Riemannian geometry in Einstein’ s field equations and solutions are also
modified for torque and Coriolis forces and spacetime torsion conditions. The torque and torsion terms are coupled
algebraically to stress-energy tensor. The effect of the torque term leads to secondary effects of the Coriolis forces
that are expressed in the metric. Torsion is a state of stress set up in a system by twisting from applying torque.
Hence, torque acts as a force and torsion as a geometric deformation. The gauge conditions for a rotational gauge

potentid, C;bs are used.
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The affine connection relates to transformations as trandations and rotations in a uniform manner and
representsthe “plasticity” of the metric tensor in general relativity. Connections can carry straight linesinto straight
lines and not into parallel lines, but they may ater the distance between points and angles between lines. The

affine connection G, has 64 components or 4 components of A,. Each index can take on one of four values
yielding 64 components. The symmetric part of G, has 40 independent components and the two symmetric

indices give ten components with times four for the third index. The torsion tensor T, has 24 independent

components and it is antisymmetric in the first two indices, which gives us six independent components and four
independent components for the third index (indices run 1 to 4). These independent components relate to

dimensionsin analogy to the sixteen components of the metric tensor g, . If thistensor is symmetric then it hasten

independent components. Note for a trace zero, tr 0 symmetric tensor, we have six independent components. The
components of atensor are, hence, related to dimensi ondity.

It appears that the only method to formulate the modified Einstein’'s equations, to include torque and Coriolis
terms, is to utilize the U, spacetime and not the usual four-dimensiona Minkowski space, M,. This is the case
because the vectors of the space in spherical topology have directionality generating a discontinuity or “ part in the
hairs’ of a sphere whereas a torus topology can have its vectors curl around its short axis having “ no partsin the
hairs’ so that no discontinuity of the vector gace exists. Thus al the vectors of the space obey invariance
conditions. Also, absolute paralelism is maintained. The U, space appears to be the only representation in which
we can express torsion, resulting from torque, in terms of the Christoffel covariant derivative, which isused in place

of the full affine connections where N,  represents the covariant derivative in U, spacetime using the full

unsymmetric connections. Thus we are able to construct a complete, self-consistent theory of gravitation with
dynamic torque terms and which results in modified curvature conditions from metrical effects from torsion. In the

vacuum case, we assume df Rd*x=0 where R is denoted as the scalar curvature densi ty in U, spacetime.

This new approach to the affine connection may allow the preservations of the equivalence principle. The
usual nonsymmetric stress-energy tensor is combined with its antisymmetric torque tensor. The U, is key to the
structure of matter affected by the structure of spacetime. We present in detail the manner in which the U, group
space relates to the unification of the four force fields. The structure of U, is four copies of U,, the Weyl group, as

U,=U," U, U, U, whereU; x U, represents the torus. Hence U, represents the dual torus structure. In this

case we believe the U, spacetime, which allows a domain of action of torque and Coriolis effects, is a model of the
manner in which dynamical properties of matter-energy arise.

Further, in section five we show that the 24 elements of the torsion tensor can be related to the 24 element
octahedral gauge group S' which are inscribed in &, and that the 24 element octahedral gauge is related to the cube
through its being inscribed in . The 24 element group through S yields the cubeoctahedral group which we can
relate to the U, space; thus, we can demonstrate a direct relationship between GUT theory to Eingein's field
equationsin which atorque tensor and a Coriolis effect is developed and incorporated.

2. ANALYSISOF TORQUE AND CORIOLISFORCES

In this section we present some of the fundamental descriptions of the properties of the torque and Coriolisforces.
We examine the forces, which appear to yield a picture of galactic, nebula, and supernova formation. We apply

these concepts to Einstein’ s field equations and their solutions. The angular momentumisL =% and L=r" p

where I' isaradial variableand p isalinear momentum. The torque

dL ,
D t = i [
where F isforce and the conservation theorem for the angular momentum of a particle states that if the total torque
t iszerothen
dL _

2 L=—==0
@ - dt
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and thus the angular momentum is conserved. In the case where t * O then Lis not conserved. Torque is a
twisting or turning action. Whereby

s

©) t=r F=r" T(m)=r" L p

- - dt dt
for r isaconstant. The force F isorthogonal tot , and I isnot parallel to F . The centrifugal term isthen given as
4) Cc =w’r, cosq
where W isthe rotation of aspherical body, such asthe earth’s angular velocity or rotation and I, itsradiusand (
is the angle of latitude. The Coriolis term is proportional to 2w~ V and is responsible for the rotation of the plane

of oscillation of aFoucault pendulum. Thisisamethod whereby the Coriolis force can be detected and measured.
The key to the gyroscopic effect is that the rate of change in its angular momentum is always equal to the
applied torque. The direction of change of a gyroscope, therefore, occurs only when atorque is applied. The torque

is (5) t=r F2 . g2
e2 g

dueto F which is perpendicular to I and L is the vector angular momentum L = [' p= m([’ \_/) where the

vector I' istaken aong the axis of the gyroscope, and g isaphase anglein the more general case.
A spinning system along an axis ' with an angular momentum L has a torque in equation (1) when the
force F is directed towards the center of gravity. If the total force, F =0 then P =0 and linear momentum is

conserved. Angular frequency, W

, _ laal?vo
A i
mgdr© g
inthe generalized casewhere E =V +T where E isthetota energy, V isthe potential energy, T iskinetic energy
and misthe mass of the system. A revolving of a particle has angular vel ocity

(7) =t L
a dt  mr?

The rate of revolution decreases asr increases. If r = constant, then the areas swept out by the radius from the
origin to the particle when it moves for asmall angle dq , then

(6)

) dA:%rqu
then L:mzq' and hasan area A. Then
9) —=Zrg=irr—=—

d 2 2 dt 2m
the radius vector I moves through dg and for a central force, if the motion is periodic, for integration over a

0

2m
For a rigid uniform bar on a frictionless fulcrum, the moment of a force or torque, in the simplest of
mechanical terms, is the mass times the length of the arm. The product of the force and the perpendicular distance
from the axis line of the action of the forceis called the “force arm” or movement arm. The product of the force and
its force arm is called the moment of the force or the torquet . In more detail, we can describe torque in terms of a
force couple exerted on the end of arod for a solid or highly viscous material producing a twist displacement and
hence shear stress and shear strain

Shear stress  F/A _
Shear stain f

complete period t, of motion, we have the areaof the orbit A=

(10) M
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where Fisthe force, A isthearea, f isthe angle of distortion and M is the shear modulus. Torsion is a state of

stress set up in a system by twisting from an applied torque. Torque creates action or work. The external twisting
effect is opposed by the shear stresses included in a solid or highly viscous material. That is, torsion is the angular
strain produced by applying torque, which is atwisting force, to abody or system, which occurs when, for example,
arod or wire is fixed a one end (i.e., has an equal and opposite torque exerted on it) and rotated at the other.

Therefore, torqueis aforce and torsion is a geometric deformation in the medium given by the torsion b
pMr*

2d
where r is the radius and d is the length or distance in flat space. The torque for such a system is defined by

t =b Qor

(11) b =

pMr‘Q

2d
where ? isin units of dyne-cm, M is the shear modulus and relates to the distortion of the shaft in dyne / cn’ and
Q isthe angle in radians through which one end of the shaft is twisted relative to the other. The moment of inertia

(12) t =

is denoted as| and we substitute W? from equation (6).

1 2 1 2 2 1 2
13 =—nv- =—\nr =—lw
13) E =5 == =2

In our case, the term W for a generalized modulus in a medium that relates to the shear tensor of a fluid
torsion (Ellis, 1971) is utilized. We employ a torque tensor as thel (m, E) = _ whichisaterm in Einstein's

m

stress-energy tensor T . where torque is given as

_pWQ,,
"“ 2R
where Risthe scalar curvature path in U, space over which torque acts and r is the radius of twist produced by the
torquing force acting over R. In order to define the scalar sustained for maximum curvature, hence maximum torque

in spacetime, we express the spatial gradient of R aong the vector length R, asNr R=R . Thisisthe tensor

(14) t

form that can be utilized in Einstein’s field equations. The distance or length is now denoted as R in a generalized
curved space. We can denote R as R,,,,. The quantity Q,,, is atensor in which rotation is included, and hence

requires inhomogeneous L orentz transformations and requires a modification of the topology of space from M, into
U, space, which have intrinsic rotational components. In order to convert from Minkowski space to U, space we
must define the relationship of the metric tensor and the coordinates for each space. We have the usual Minkowski

metric ds® = g, dx*dx® and the metric of U, space is given as ds® =h  dx™dx" . We relate the metrics of
ho = X T then T, =h, T (all ind
the M, space and U, spaceas N, = ™ ﬂ?gab. For any tensor [ than T, =h 17 (al indicesrun 1to
4). Then under the gauge transformation for an abitraryl , as y ,, ®y .+l . , we have
(v-h d*xt ™ =0 inU,spacein analogy to (/- gd*XT™ in Minkowski space.

Note that the spin field is the source of torsion and is the key to the manner in which spin existsin particle
physics and astrophysics. The formulation of torque is not included in Einstein’s field equations in any manner and
isnot incorporated in Rw, gwand T, terms without modifications. Currently it appears that torque and Coriolis

forces are eliminated by attaching the observer to arotating reference frame and by assuming an absolute symmetry

of the stress-energy tensor T™ =T"™ so to make the torque vanish [1]. We believe that inclusion of torque is
essential to understanding the mechanics of spacetime, which may better explain cosmological structures and
potentially the origin of rotation.
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3. THE INCLUSION OF TORQUE AND THE CORIOLISFORCESTERMSIN EINSTEIN’SFIELD
EQUATIONS

In order to include torque, we must modify the original form of Einstein’s field equations. The homogeneous and
inhomogeneous Lorentz transformations involve linear trandations and rotation, and hence angular momentum is
accommodated. The time derivative of angular momentum, or torque, is not included in its field equations.
Researchers have attempted to include torsion by different methods since Elie Cartan’s letter to Einstein in the early
1930's [2]. However, we fedl that an inclusion of torsion in Einstein’s Field Equations demands a torque term to be
present in the stress-energy tensor in order to have physical effects.

Two currently held key issues are addressed in which torque and Coriolis forces are eliminated. First, in
reference [1] the complications of fractiona differences are avoided by formulating them in terms of the size of
spatial lower limit Planck length dimension, ¢ and the earth’s gravitational acceleration g ~ 10° cm/sec®. The
choice of g/ <<1 is made so that the accelerated frames undergo smal accelerations which yields an

approximately inertial frame. Black hole dynamical processes requires a relaxation g/ <<1. If one considers a
vacuum structure having alattice form, then the conditions to include torque and Coriolis forces require arelaxation
of the g/ <<1 condition to be consistent with black hole physics and torque terms in relativity, then g/ £1

or g/ ~1. Second, the torque and Coriolis forces are eliminated in a nonrelativistic manner by carefully choosing

the observer’s state of coordinates by preventing the latticework from rotating, i.e. by tying the frame of referenceto
a gyroscope that accelerates in such a manner that its centers of mass are chosen to eliminate these forces [1].
Hence, we have amajor clue for including torque so asto fix our frame of reference to the fundamenta lattice states,
which includes rotation terms, and does not eliminate them. Then, for

(15) == max)- alux)

so that a(g >§) is diminated, noting that U is the four vector velocity and e is a basis vector in anaogy to X, y, z.

The incorrect transport equation is the Fermi-Walker transport equation because it is formulated in a rotating frame
that eliminates torque. This equation acts at the center of mass so that I, the moment of inertia, is zero; hence this
cannot be our reference frame.

It appears that we must utilize a different kind of rotational frame of reference. We have utilized this frame
using the Kerr-Newman or Reissman-Nordstrom solutions with spin, as well as atomic spin and the spin of the
whole universe asin our scaling law [3-8]. We thus generate a torus from our new basis vector sete [9].

Given these two conditions, we proceed to account for a torque term in Einstein's Field Equations. The
angular momentum vector L for a system must change in order to have torque. Hence L is not orthogonal to u, the
four velocity; thus, atorque can be utilized in Einstein’ sfield equations. Then

dL ,
16 —1(@u a-L
(16) p (u a-L
whereasin the Fermi-Walker transport case
(17) dL_ u a)- L
dt -

where a is the four acceleration. The fact that a non-zero solution exists allows us to choose frames of reference
that do not move with the system and include torque, which requires avariable acceleration. No longer is

3h2
18 L?=="
(18) L=
constant because torque,
. dL
19 t=L=—7=10
19 T dt

where L isthe angular momentum.

Key to the inclusion of torque terms and its torsion effects is the modification of Einstein’s field equations
formulated in the generalized U, spacetime. This approach can be reconciled with conditions for affine connections
and extended Lorentz invariance. Torsion resulting from torque is introduced as the antisymmetric part of the affine
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connection. The U, space appears to be the only spacetime metric that yields an unsymmetric affine connection and
an antisymmetric torsion tensor term that preserves Lorentz Invariance [10]-[11]. We believe the U, spacetime
allows a domain of action of torque and gives us a model of the manner in which dynamical properties of matter-
energy arise out of the vacuum structure[12].

The vectors of the space in spherical topology have directionality (having a part in its hairs on a sphere)
whereas a torus topology can have its vectors curl around its short axis (i.e., having no parts on the hairs of atorus)
so that no discontinuity of the vector space exists. Thus all the vectors of the space obey invariance conditions. Also,
absolute parallelism is maintained. Topologicaly, a torus is a surface of revolution generated by rotating a circle
about a non-intersecting coplanar line asits axis.

For the vacuum gravitational field equations we introduce the antisymmetric torque term where

t ;‘Sm * =0 which gives us the antisymmetric derivative of a second-rank potential field y ms - 10rSon gppears

to be the property of the geometry of spacetime, not the stress-energy tensor term; whereas torque is an inherent
property of the stress-energy term. Thus torque and torsional effects on curvature can be expressed as tensor terms.
We utilize the variationa principle

(20) d¢y-h(R +L)dx=0
where R issubtended curvature density and L isthe Lagrangian. We define h m 8 O, expressedinU, space.
Then we can write the field equations

(22) -h™+Nt™ +22 Mt ™ =0

which are the gravitation and h™ is the Einsteinian tensor of U, space time. In vacuum s [y =0 implies the
existence of aconserved current, giving us amore generalized form of the variational principle or

(22) d((R +kL, +KL,)d*x=0

for the source tensors

(23a) d., =T™dg,.

and

(230) dL, = jdy ,,

where T™ is the density stress-energy tensor and L, is the Lagrangian density. The constant ? is the coupling

constant K = 8p and K isthe coupling constant for torque term. We define

(24) J™ =KT™ - Kj™ /2

which thefield equation

(25) hm- 2 mgrab = gm

which is given as the right side of the above equation (24) and t ™ is the antisymmetric source term which arises
K

from intrinsic spins where TJ"° = - EJ"" . Then gauge invariance implies (/- h d*xt ™l =O0foran

arbitrary gauge transformation | -

The stress-energy tensor can then be related to the stress tensor and the torque tensor as

(26) me = (3K /sk)t ™Mab j°
In vacuum the static solution yields the line element
(27) ds® = e'dt? - r2dW? +¢€' dr?

where ? and n are functions of r only as? (r) and N (r). The W term is an anharmonic object which preserves
absolute paralelism.  We can write amore generalized stress energy term as

(28) T™ =KT™ +kt ™
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where the first term T™ is the usual stress energy term where . T" =0 and the second termt ™ is the torque

teemand T ™ becomes the total stress energy term including torque. Note that both covariant and contravariant
tensors notation are utilized. The most general form of Einstein’s field equations with torque and the cosmologica
term, L * O inU, spacetimeis

(29) Rm'%erhnn_ I-hnn:K-I-rm-l-ktrm

Where we have the usual gravitation sourceterms T,  and non gravitational sourcetermst , withL asthe

cosmologica constant in U, space. Note that unitsof ¢ = G =1 are used in this section and that the cosmological
congtant in atorque field may yield correct approximations for the universal cosmological acceleration of distant
objects.

A conceptua picture of the interpretation of Einstein’s field equations is that the presence of matter-energy
curves space and time. Torque is considered as a property of the stress-energy term, and the Coriolis forces are
derived as secondary properties resulting from the torquing of matter-energy in spacetime. Hence, resulting Coriolis
effects are driven by torquing on spacetime and therefore spacetime geometry is modified.

The Coriolis and centrifugal terms enter when we define a new frame of reference. We start from the
L orentz coordinates which holds everywhere

(30) C—C—7=

We define G, =f j for agiven scalar potential field, f for aGalilean rather than Lorentz coordinates. Then
e % To_
efx' @1 g
and X° =t. The potential f satisfies the L aplace-Poisson equation.

(31) i
For rotation and translation, we have X’ = Ay x* +a’ where the rotation matrix is A, A, =d,, and the

trangation partisgivenas @' . Then x* = A x! - a forak® Ajkaj
which defines anew coordinate system. The

(32) G =G, =A,A
produces the Coriolis forces from these transformations. From

1if "
3 Gy = g7+ A(AX - &)

gives us the centrifugal force, .kﬂk and the inertial forces & which are separated. Thus we have tensor
notation which alows us to relate these terms to the stress-energy tensor of Eingtein’s field equations. The inertial
forces&* isthe second derivative with respect to time and Ak ., isthefirst time derivative.

The scalar potentials transform as f =f - dx* + additional higher order terms such as a(ak Xk) for
Coriolis, A zA« and centrifugal forces, AjkAﬂkX” . If the additional higher order terms are zero, then no Coriolis
and centrifugal terms areincluded. One can measure the quantity

aIf

—= GOO but only in afinite range. We can express these termsin terms of the metric theory of gravity as

‘Hx

la[gbn ﬂgbm ﬂgrm
3 - ab_ _
(34) Gn =0 Zgﬂxm RV

9
]

For
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(35) Gfb:'(Nbdt@a)C@ 0
then the gradients N, dt =0 for all b and N_dt =0 for all velocity vectors X =n and spatial vectors, X

acting on arbitrary basis set, € or €, = 0. Thisis clearly not the case for centrifugal, torque and Coriolis
terms. The gradient of proper universal time is not conveniently constant (asit isin the above case) when additional

terms are included, hence we will need to redefine the geometric version of space and time by use of our vacuum
equations, which we demonstrate in this section and in section 4 and relates to the U, metric.  Hence, the key may

1
bein relating the Gaussian curvature through aradius & = —- to the cubeoctahedron and dual torus
a

form (seeFig. 1).
. . dx’ _ .
Even for an accelerated observer for aparticle velocity v ° F(_ej then we have theinertial acceleration
X
d?x! ,
(36) 7 & =-as 2w n+2a- vy
where X°=t isthe fourth component of space, which istime, and 2W " n isthe Coriolis term and 2(@- rl)l is
the relativigtic correction to an inertial frame. The signature we use is (- ,+,+,+) . The expression in terms of the
2
potential energy is w? = _(F) where W is the angular velocity. This latter term requiring modification in
m ar

order to include torqueis
dL .
37 t=—=L
(37) L=~
wheret =1~ F, seeequations (1),(2),(3).

Torque aso has intrinsic properties of the spacetime manifold. One can relate the torsiona effect as a
geometrical affect on spacetime curvature topology in analogy to Riemannian geometry. Using the torque term from
equation (14) whichisin units of dyne-cm we return to our generalized stress-energy tensor

8pc* 8pG
(38) Tm =P g +—|O4
G Cc
where T ™ isthetotal stress-energy tensor including its torque term. The quantity in the usual stress energy and the
new torgue term includes the fundamental force [8]

(39) F= %;

in units of dynes. The units of the left side of the field equationsis in the units cnf, or length squared. The quantity
/ isincmand

onm

1/2
&sn O
eC g
which isthe Planck length and can be written as
12
& O
(41) (=¢—~
eF o
for the fundamental forcein equation (39) . Now we can write the torque term as
,1/2 1/2
& aehd m _8()”
(42) —Cc—=+ t - Tt
FeFg F

Now we can write the total stress energy term as



The Origin Of Spin 161

Ch 1/2 é Ch 1/2 l]
(43) T™ =8FT™ +—8p'£3,2 t™ =8pFgl™ +—( 2,2 t™y
é a
From equation (29) and (38) we can write our generalized field equations with the inclusion of torque as,
1 o G
(44) er_Eerhrm_Lhrm:&z; Trm+&24 Etrm

where h . represents the metric of tensor for the U, topological space. This topology is unigue for the inclusion of

the torque term in the stress-energy tensor in equation (44). Coriolisforces result from rotational effects of torquein
this topology and also may yield anon-zero cosmological term, L . Seethe next section.

4. EXTENDED KERR-NEWMAN SOLUTION TO EINSTEIN'SFIELD EQUATIONSWITH THE
INCLUSION OF TORQUE

We have developed a new solution to Einstein’ s field equationsin the previous section which contains atorque term.
This requires unsymmetric affine connections in the metrical space. To introduce torque into the Einstein-Maxwell

equation, in order to unify gravity and electromagnetism, we must introduce an antisymmetric part into F, divided

by the number of permutation related to the degrees of freedom. We can then represent the simplest covariant
second rank tensor potential to represent torsion, which we term 'y . The electromagnetic field vector is

constructed from the vector fieldsas F,,, = 2f  wheref ., isthe potentials. We define the torsion term in terms of

generalized potentialsas  t . Gauge invariance isthen expressed asy ,, ® y , +1 , where | is

nv,s = y n,s

any vector field. Thus one expects that the second rank current density is conserved [13]-[14].
We proceed from the solutions to Eingtein’'s field equations including the torque term conditions and

determine that these conditions require the inclusion of the cosmological constant L 1 O and the modified stress

energy tensor. The Schwarzschild spacetime geometry for the Schwarzschild black hole gravitationa field for a
spherical coordinate line element, isgiven by

2M dr? .
45 ds’ =- (1- =—)dt* +———+r?(dg? +sin’qdf 2
(45) a-=-) @ 2M1T) (dg qdf °)
We consider the metric parameter, F for a non-zero cosmological constant of theform L = - %En(l- 2M /1)

1
. The normalization scale F = Eﬁn(l- 2M /1) for aframe of reference external to the black hole. We can also

write thisform of the cosmological constant as

(46) L :;1/2
[1- 2M /1]

or

(47) e =[1- 2M /1]

at the Schwarzschild radius 1 , for avariable radius M(r). A slice through the equatorial of a spherical system and
also between adual torusisgiven as
1
8=
[1- 2m(r)/r]
which comprises an apparent flat space where m(r) = M . We can then write
(49) ds® =e"'?dr? +rdf ?

(48) dr? +r2df
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M
for a non-zero cosmological constant,L . For Iy [l —, which is the Schwarzschild singularity. The global
C

gtructure of the Schwarzschild geometry represents a method of embedding Feynman diagrams. The coordinate
system that provides maximum insight into the Schwarzschild geometry is known generally as the Kruskal-
Szekerers coordinate systems[15]-[16].

Charge and spin are relevant; for example, consider the Kerr-Newman or Reissner-Nordstrom
generalization of the Schwarzschild geometry. For gravitational and electromagnetic fields, we solve the coupled
Einstein-Maxwell field equations to include the constraints of M, mass, g, charge, and s, spin. The Kerr-Newman
metric iswritten in theform

D . sin® r?
(50) ds® =- —[dt- asin®qdf ] +—2q[(r2 +a®)df - adt]? +Edr2 +r dg?
r r
We define the quantitiesin terms of charge, g, and the quantity a isdefinedas a® s/ M , the angular momentum,

which we usually defined as L. This gives us a method to bring torque into our model since t s defined as

dL . .
t_:d_? = L. Also torque is dependent on angular velocityQ which is expressed in terms of torque as
pWF “Q . . dQ .
t = R where the angular velocity acceleration is Q :E =—— . Hence it appears we can expand the
nr

Kerr-Newman solution to accommodate torque. For the present the unitsof ¢ = G =1 are used. We can convert
2

the units of torque into units of cnf. The units of torque are dyne-cm or gm

~ = ergs.

Before proceeding further, we need to define two other quantities

(51) r?°r®+a’cos’q
and
(52) Dor?-2mr+a’+q°

Note we use the action integral ( (R+e) Fg d*X so that we can convert massin gm or density in gm/cm?® into mass
in cm or density in cm? by multiplying by 0.742 x 10 cm/gm and lengths in units (3/8oP,)" and pressurein
units I ,, massin units (3/ 32pr ,)">.

Consgtraints on the Kerr-Newman geometric solution to Einstein’s field equations give black hole topology
for the condition M 2 3 q2 +a’. Recall that the quantity, @ contains spin and mass, in the condition where for
M suchthat M ? ~ q2 +a’.ltis possible that, under imminent collapse, near I, centrifugal forces and / or

electrostatic and plasma el ectromagnetic repulsion will be delayed or halt and collapse and become balanced [17].
In the case of the Reissner-Nordstrom geometry which contains electromagnetic fields, for ¢ * O but

S =0 spiniszero. The Kerr geometry is valid for an uncharged system or q = 0 and a Schwarzschild geometry for
g =s=0. The case we consider that is relevant to including torque is the case for M > = g + (s/M)? for

the Kerr-Newman geometry for a black hole rotation in the ¢ direction and spin along the Z axis. Also, angular

momentum will occur along the z axis only. For black holes g<<M (utilizing G = =1 units), the repulsive
electrostatic force on protons of mass myis similar to the gravitational pull by afactor of

electrosttic force _ eq e 107
gravitational force m M m

where M isthe mass of the black holes.
We do not need to convert rectilinear coordinates x, y, z to the spherical coordinates r,q ,and f . The q

(53)

r

coordinates moves or rotates in the x-y planeand f movesinthe zr plane where r is a radius vector from the
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origin of the x, y, z system. The spherical coordinate  can go from OEQ£2p ad OE£f £p ad
r3 0. Then x=rsinf cosq and y=rsinf sinq and z=rcosf . Also r*>=x*+y*+7z° and
y

q == relaing the variables x, y, z, and r and q utilizing the Kerr-Newman extended solutions including torque
X

inunitsof c=#% =G =1 givesu
(54)

) 2 2
ds? = 2[at - 2sin?qdf 12 + 2L [(r2 + a?)df - act]? #odr? %
r r

Pl AW “Q cos? qdr 2 "
2mR

2 4 2 4
herethelatter termisthetorquetermt = (g_) PWFQ = PEWQ
E 2R 2mR
E and marein Planck units. Note that spin and torque are related. The Coriolisforces act as higher order terms
which are smaller than the other terms but are still significant [17].

In this section we have shown that we can modify Einstein’ sfield equations and the Kerr-Newman solution
in order to accommodate torque and the Coriolis forces, which we term the Haramein-Rauscher solution. Since
Einstein's field equations obey the Laplace-Poisson condition, the torquing of spacetime may be the result of the
vacuum gradient density in the presence of matter-energy. Modification of the field equations makes it possible to
include the torque terms and hence generate more redlistic solutions. These solutions more comprehensively
describe the dynamical rotationa structures of galaxies, novae, supernovae, and other astrophysical structureswhich
in this case are driven by a spacetime torque. Hence, with the inclusion of torque and Coriolis effectsin Einstein’'s
field equations, the spacetime manifold correlates well with the observable mechanisms of black holes, galactic
topology, supernova formation, stellar plasma dynamics and planetary science such as ring formation and the
Coriolis structure of atmospheric dynamics. This may lead to a model where the driving torque and the dynamical
Coriolis forces of the spacetime manifold topology are responsible for the observed early formation of mature spiral
gaaxies[18]. Further, our model is consistent with galactic structures, the super-massive black hole at their centers,
aswell as polar jets, accretion disks, spiral arms and galactic halo formations.

with precession defined ascosq and 7,

5. THE GROUP THEORETICAL APPROACH TO A UNIFIED MODEL OF GRAVITATION
INCLUDING TORQUE AND THE GUT THEORY

A test particlefaling in agravitational field accelerates relative to the observer’ sframe as

(55)

where X, isthetemporal component of X = (X, y,z,t) or X, =t for j =0 andin genera j runs0to 3. The
inertial acceleration of the observer’s four space acceleration is a . For the spatial vectors of the observer, éj are

rotating with angular velocity, W . In flat space this is the geodesic trgjectory only if an additional rotationa frame

of reference + 2(@ Xl)l [1]. Thisisnot our case when weinclude the Coriolis effects.

dx,

Weterm €, the points along the observer’s path as its time direction €, =U = d_t where t isnow

defined as the proper time and the spatial components é j ae the basis vectors. For tetrad orthogonality we have
2 >éj :dij ,
laws of atest particle space in curved spacetime appear as moving in a flat space. However, this is only a very

limited approximation, as spacetime is curved and Riemannian in globa space. The equivaence principle or the
timerate of change of avector occurs over finite distances, not just infinitesimal distances.

for Euclidian absolute parallelism or for the generators of Lorentz transformation, then the transport
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L
Coriolls affect . Torue
i

fig. 1b Singularity

fig.1a

Figure 1(a) is a topological representation of the Haramein-Rauscher solution as a result of the addition of torque
and Coriolis force terms as an amendment to Einstein’s field equations, which modifies the Kerr-Newman solution.
The Lorentz invariance conditions are reconciled by utilizing a modified metrical space, which is not the usua
Minkowski space, but the U, space. This space is a consequence of the Coriolis force acting as a secondary effect,
which is generated from the torque term in the stressenergy tensor. In figure 1(b). Coriolis type dynamics of the
dual U, x U, spacetime manifold areillustrated. The form of metric produces the dual torus astwo copiesof U X
U, which we demonstrate through the S® spherical space, is related to the SU, group and other Lie groups. In figure
1(c). the 24 element group through S yields the cubeoctahedral group which we can relate to the U, space (next
section). Thus the S' octahedral group is related to the U, topology and we demonstrate that the cubeoctahedral
group relatesto the GUT (Grand Unification Theory).

We define @ the four acceleration a = N mU and the angular velocity of rotation, of the spatial basis
vectors, €, in the Fermi-Walker transport theory, is W . The Fermi-transport vectors are expressed relative to the
inertial guidance gyroscope, Uxa=uXv =0. If U and W are zero then the parale to the observer

isNu éj = 0. The proper time gives us the starting point of the geodesic with an affine parameter equal to the

proper length. Hence, we see that the role of the Coriolis force, as well as including the torque term in Einstein’s
field eguations, is again going to lead us to a U, space rather than an M, space, in which we utilize the
inhomogeneous L orentz transformation.
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Further, we must consider a geometric picture in terms of finite group theory with finite generators and its
relationship to the Lie group theory and their algebras having infinitesimal generators. These finite groups are the C,,

groups. These groups can be related to the 24 element octahedral group, the 0[6] and C[O] groups. Thereis no

real independent observer as the observer moves within the system since, in fact, under no circumstances could any
observer be completely disconnected from the observed, since observation would then be impossible.

The affine connections that are utilized in general relativity also apply in crystallography. Under affine
connections, transformations are linear and rotationa in a uniform manner. Straight lines are carried in to straight
lines and paralel lines, but distances between points and angles, lines can be atered. All representations of a
compact group are discrete. Unitarity relates to the conservation of such quantities as energy, momentum, particle
number, and other variables. The crystallographic lattice groups are finite groups. G, and K,, specify the trandations
and rotations in a finite dimensional space. (Note in crystallography, the finite dimensional space involves arrays
specifying elements of the groups in a spatial lattice.) This lattice structure appears to reflect the actual geometric
structure of space and time [19]. The two torus satisfies conditions of a Lie group which can have an underlying
manifold as a Lie algebra. Thisis necessary for the concept of invariance to exist. The McKay groups are afinite
subgroup of the special unitary Lie groups such as SU,, which isthe set of unit determinants 2 x 2 complex matrices
acting on C, the complex space. The SU, group is geometrically the 3 sphere, S acting on C2. Thus, we can relate
its torus geometry to the Lie groups of the GUT scheme.

For the infinitesimal generators of the Lorentz group, we have an associated Lie algebra. However, if we
have finite generators, we have a C,, group space. We might then say that M, space has a Lie algebra associated with
it, whereas U, space has a finite G, algebra associated with it. We might well expect this because of the group
theoretical association of the double torus and the cubeoctahedron, which is described by a crystallographic G,
group theory.

The Coriolis force comes from out of the metric; that isthe spatial part or theleft side of the field equations

utilizing the double octahedral group or cube octahedral geometry. For the U, metric we see that the C[O] group

naturally leads to the GUT scheme. Hence, the unification picture results directly from the geometry of spacetime
with the consideration of finite group theory. The U, space directly relates the new Haramein-Rauscher equations of
gravity, matter-energy, and torque with the GUT theories. Thus, we can construct a fundamental relation of
cosmology and quantum particle physics by relating Lie groups and their infinitesimal generators of the Lie algebra,
and groups having finite generators for finite groups.

The specia unitary Lie groups, which are topological groups having infinitesimal elements of the Lie
algebras, are utilized to represent the symmetry operations in particle physics and in infinitesma Lorentz
transformations. For example, the generators of the specid unitary, SU, group is composed of the three isospin

operators, | as |,,l_ and |,having communication relations [I o I_] =il, . The generators of SU; are the three
components of | spin and hypercharge, Y and for other quantitieswhich involve Y and electric charge Q. Thus, there

are eight independent generators for the traceless 3 x 3 matrices of SU;. The 03+ group of rotationsis homomorphic

to the SU; group.

The regular polyhedral groups, including the cube and the octahedron, form a complete set of finite
subgroup of SO; the specia orthogonal -3 group. The continuous Lie groups SU, acts on a two dimensional real
space in analogy to SO, acting on a three dimensional real space. Significantly, the S group, also called the SU,
group acts as a space which is the double cover of SO; That is SU, acts as a space that is a sphere, S, and SO,
whichisS®/{+1} so that SO, can be derived from its subgroup SU, by the plus and minus elements of SU, in order
to form SO; [20]-[21]-[22]. The set of al rotations of a sphere is a useful example of a Lie group. They are a
continuous infinity of rotations of an ordinary sphere or 2-sphere, S?, which is embedded in SO,. The rotations of S
form a 3-sphere modular plus or minus 1, called S° / {+1} which is embedded in SO,. This group is the set of all
specia orthogonal 3x3 matrices. The finites subgroups of SO; are the symmetry groups of the various polyhedra
which are inscribed on the sphere S upon which SO; acts. These regular polyhedral groups are the symmetry groups
for the five Platonic solids. The octahedron and icosahedron are inscribed in &, the symmetry group of 24 elements
for the octahedral group O and the 60 element icosahedral group |. The polyhedral groups T, O, and | describe the
symmetries of the five Platonic solids[23].

The octahedron and the cube have the same symmetry group and are dual to each other under the S' group.
The icosahedron and the dodecahedron are dual to each other under the A5 group and the 12-element group T is the
tetrahedral group of which the symmetries are inscribed in § and is the A, group. The 24 element octahedral group
is denoted as O and is the set of all symmetries inscribed in &, which is also the symmetry group of the cube since
the eight faces of the octahedron correspond to the eight vertices of the cube. The relationship of the finite and
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infinitesmal groups is key to understanding the symmetry relation of particles, matter, force fields or gauge fields
and the structural topology of space, i.e., real, complex, and abstract spaces. We now relate the toroidal topology and
the cubeoctahedron geometry to current particle physics.

The 24 element octahedral group isgiven as

(564) c[O]=U," U," U,
which is mapable to the conforma supergravity group SU(2,2/1). We can writethisas
(56b) Cl[O]=U, " U,” J,” U,” Y,

The U, can act as the photon (electromagnetic) gauge invariance group and relates to the rotation group SO;. The
other U, scalar is the base for space and time as the compact gauge group of the spin two gravitron. The SU, group
can be associated with weak interactionsand U, ” SU, is the group representation of the electroweak force. The
SU; groups represent the strong color quark — gluon force or gauge field. [20]

Thus we have a topological picture that relates to the unification of the four force fields in the GUT and
supersymmetry models. More exactly, the maximal compact space is embedded in C[OS"] or SU(2, 2/1) yields the
24 element conformal supergravity group. The icosahedron or Klein group yields the set of permutations for S'
permutation group associated with C[O]. Also in the Georgi and Glashow scheme [24], we can generate SUs asa 24
element group related to S' embedded in SUs=SU,” SU,. The key to this approach is the relationship of the finite
groups C[O] and the Lie group such as the SU, groups. This picture is put forward in detail by Sirag in his
significant advancement of fundamental particle physics[20]-[21].

The eight (8) fundamental spinor states can be expressed in terms of the Riemann sphere & which defines the
relationship of spinors to spacetime. The 8 spinor states correspond to the 8 vertices of a cube. For 8 antistates,
Sirag can generate all 16 states of the fermions family for a cube and its mirror image cube. In his work, Sirag
utilizes the symmetric four group S* which isisomorphic to O, the octahedral group.

As before stated, the cube and octahedron are dual to each other under the symmetry operations of the S* group.
Also, the tetrahedron is dual to the cube under the A, group, and the icosahedron and dodecahedron are dua under

the As groups. The cover group C[O(] , which isthe DS' group, isthe cover group of C[O] and C[a] . The C[O]

group is aso denoted SU(2, 2/1) and is the compact representation of the Y ang-Mills bosons and C[a] represents

the matter fields of the Fermions. The Weyl group is SU(2,2) which is related to SU(2, 2/1), the Penrose twistor
[25]-[26], which represents a vortical rotationa complex dimensional space, mapable to the Kaluza-Klein model,
which relates the electromagnetic metric to the gravitational metric as a five dimensional space [27]-[28]. The
Penrose twistor is a spin space and is like a double torus without a “waste.” The U, group represents the four real
spacetime dimensions and U~2 the four imaginary spacetime components forming a complex eight space [29]-[30]-

[31]. Thetwistor agebraof thiscomplex eight space is mapable 1 to 1 with the spinor calculus of the Kaluza-Klein
geometry, thus electromagnetism is related to the gravitational spacetime metric [29]. The S' and st groups are 24
element groups, as S can be associated with C[O] and S* with C[O]. The S group is associated with the 24

dimensions of the Grand Unification Theory, or QJT theory. The conjugate group of S* is associated with
U, U," U, orfor U, which is four copies of Uy. That can be written as U, U,” U,” U, where U, U,

represents a torus, hence U, represents a double or dual torus. Both C[O] and C[a] relate to the T* group, where

T" is the direct product of n copies of U;, called an n torus, which is aways an Abdlian group. The T in this context
refersto the structure of space and time.

We have demonstrated that the cover group of the cubeoctahedron generates the dual of thetorusU, " U, ,

and hence we demonstrate that this cover group generates the dual torus, which is U,” U; cross U, U, inthe

Harameinian topology (see Fig. 1), which is defined as the dual torus space. The hourglass topology is directly
formed from the topology of the dual sphere. The relationship of the cubeoctehedral groups and the dual torusis a
fundamental tenant of the Haramein geometric topology and, as seen here, seems to be fundamental for unification
[31].

The key is that the infinitesima Lorentz transformation is related to te concept of the infinitesmal
generators of the Lie algebras. We are dealing with both infinitesimal and finite element systems when we consider
torque and Coriolis terms in Eingtein’'s field equations. The Lie groups are, of course, the basis of the GUT
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unification scheme. The relationship between the torus space U, and the subset of the 0[6] and C[O] spaces is

the cubeoctahedron. Theinclusion of torque and Coriolistermsin Einstein’ s field equations, forming amodification
of the field equations, yields a group theoretical basisin the U, metrical space that forms a possible unification of the
gravitational force with its strong, weak, and electromagnetic (el ectro-weak) forcesin aunified theory.

CONCLUSION

We have developed an extended form of Einstein’s field equations in which we include torque and Coriolis forces,
and hence torsion effects. New solutions are found to the extended field equations, which generates a modification
of the Kerr-Newman solution we term the Haramein-Rauscher solution. We establish a reference frame in the
description of the rotating metric that accommodates the complexities of gyroscopic dynamics — torque and Coriolis
forces. This approach may alow usto define the origin of spin in terms of the new torque term in the field equations
and better describe the formation and structure of galaxies, supernovas, and other astrophysical systems, their
plasma dynamics and electromagnetic field. We formulate a relationship between gravitational forces with torsional
effects and the Grand Unification Theory (GUT). This unification is formulated in terms of the metric of the new
form of Einstein’s field equations which is a U, space and the group theoretical basis of the GUT picture. Hence,
gravitational forces with spin-like terms may be related to the strong and electroweak forces, comprising a new
unification of the four forces.
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